
On Flips in Triangulations

Prosenjit Bose ∗

Carleton University

Resumen

We review a selection of results concerning edge flips in triangulations concentrating mainly on
various aspects of the following problem: Given two different triangulations, how many edge flips are
necessary and sufficient to transform one triangulation into another. We study the problem both from
a combinatorial perspective (where only a combinatorial embedding of the triangulation is specified)
and a geometric perspective (where the triangulation is embedded in the plane, vertices are points
and edges are straight-line segments). We highlight both the similarities and differences of the two
settings as well as outline some open problems.

1 Introduction

An edge flip in a graph is the operation of removing one edge and inserting a different edge such
that the resulting graph remains in the same graph class. The class of graphs we are interested in
are triangulations1. This simple operation generates many interesting questions about triangulations.
For example, what is the maximum number of edges that can be flipped in any triangulation? Is the
class of triangulations closed under the flip operation, i.e. given a triangulation T1 and a different
triangulation T2 of equal size, does there always exist a finite sequence of edge flips that transforms
T1 into a triangulation isomorphic to T2? Wagner [14] answered this question in the affirmative.
This affirmative answer led to other intriguing questions such as given two triangulations, what is the
shortest sequence of edge flips that transforms one triangulation into the other? How quickly can such
a sequence be computed? What is the pair of triangulations that requires the longest sequence of edge
flips, i.e. what is the diameter of the flip graph? If edges can be flipped simultaneously, are there
shorter sequences? What is the maximum number of edges that can be flipped simultaneously in a
triangulation? All of these questions and many other variants have been addressed in the literature. In
Section 2, we present a brief review of some of the main results in this area followed by a discussion
of some open issues that still need to be addressed.

a

b
d

c c

d
b

a

Edge [bd] flipped
to edge [ac]

Figure 1: Example of an edge flip.

∗Research supported in part by the Natural Science and Engineering Research Council of Canada. School of Computer
Science, Carleton University, Ottawa, Canada. email: jit@scs.carleton.ca

1A triangulation is a maximal planar simple graph.



The above setting of the problem is often referred to as the combinatorial setting of the problem
since only a combinatorial embedding of the triangulation is specified2. Although many other settings
of the problem have been studied in the literature (where the graph is embedded on different surfaces
such as the torus), we continue with a review of the results in the geometric setting of the problem.
In this setting there are a number of similarities as well as differences with the combinatorial setting.
One of the differences is that the class of graphs studied is usually near-triangulations as opposed to
triangulations. A near-triangulation is a triangulation with the property that one particular face (called
the outer-face) need not be a triangle. In the geometric setting, the near-triangulation is embedded in
the plane such that the vertices are points in the plane and the edges are straight-line segments with
the property that two edges not sharing a common vertex do not intersect. Such an embedding is often
referred to as a planar straight-line embedding. An edge flip is still a valid operation in the geometric
setting (See Figure 1). Thus, similar questions have been studied. For example, Lawson [9] showed
that given any two near-triangulations N1 and N2 embedded on the same n points in the plane, there
always exists a finite sequence of edge flips that transforms the edge set of N1 to the edge set of N2. In
Section 3, we present a brief review of some of the main results in the geometric setting of the problem
followed by a discussion of some open problems.
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Figure 2: Edge [de] can be flipped to [ac] combinatorially but not geometrically.

Note that there is quite a discrepancy between the combinatorial setting of the problem and the
geometric one. The discrepancy arises because not all combinatorially valid edge flips are geometrically
valid (See Figure 2). In the combinatorial setting, Wagner [14] showed that every triangulation on n
vertices can be transformed to every other triangulation via edge flips. On the other hand, in the
geometric setting, Lawson [9] showed that only the near-triangulations that are defined on a specified
point set can be attained via edge flips. For example, in the geometric setting, given a set of points in
convex position, the only plane graphs that can be drawn without crossing are outer-planar graphs.
This discrepancy has initiated a new line of investigation. Namely, does there exist a set of local
operations, in addition to edge flips, that permits the enumeration of all n-vertex triangulations in the
geometric setting. In Section 4, we present a review of some of these results followed by a discussion
of some open problems.

2 Combinatorial Setting

The result that initiated the research on edge flips in triangulations is due to Wagner [14]. He proved
that given a triangulation with n vertices, with a finite sequence of edge flips, one can transform this
graph to any other triangulation on n vertices. The main idea behind Wagner [14]’s proof is that a finite
sequence of edge flips allow one to transform a given triangulation to a canonical one. The canonical
triangulation defined is one where there are two vertices in the triangulation that are adjacent to every
other vertex of the triangulation (See Figure 3). The graph induced by these other vertices is a path
and is referred to as the spine of the canonical triangulation. With this tool in hand, to transform

2In a combinatorial embedding of a planar graph, for each vertex of the graph, the clockwise order of the edges adjacent to
the vertex is specified.
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an n-vertex triangulation T1 to a triangulation T2, one first transforms T1 into canonical form, then
applies the flips to transform T2 to canonical form in reverse order.

Figure 3: Wagner [14]’s canonical triangulation.

Given this seminal result, several natural questions about edge flips in triangulations leap to mind.
Indeed, this result incited a flurry of activity in many different directions. We restrict our attention to
results directly related to edge flips in the combinatorial setting. A careful analysis of Wagner [14]’s
result reveals that the length of the edge flip sequence is at most O(n2) where n is the size of the
triangulation. It is easy to see that there exist pairs of triangulations that require Ω(n) edge flips.
Consider a triangulation having a vertex of linear degree and one where every vertex has constant
degree. Since an edge flip only reduces the degree of a vertex by one, a linear number of edge flips is
required to reduce the degree of a vertex from linear to constant. Komuro [8] proved that this bound
is tight by showing that O(n) edge flips suffice to transform any n-vertex triangulation to any other
n-vertex triangulation. Mori et al. [10] currently have the best bound where they show that at most
6n − 30 edge flips are sufficient. One can view this from a different perspective via the triangulation
flip graph. The triangulation flip graph is a graph whose vertices are combinatorially distinct n-vertex
triangulations and two vertices in the flip graph are adjacent provided that one edge flip is sufficient
to transform the triangulation corresponding to one vertex to the triangulation corresponding to the
other. Viewed from this perspective, Wagner [14] showed that the triangulation flip graph is connected
and its diameter is O(n2). Komuro [8] showed that in fact that diameter is O(n), and Mori et al. [10]
reduced the constants to show that the diameter is at most 6n−30. On the way to proving their result,
Mori et al. [10] showed that given any n-vertex triangulation, at most n − 4 edge flips are sufficient
to convert this to a 4-connected triangulation (which by a result of Tutte [13] is Hamiltonian), and
4n − 22 edge flips are sufficient to convert any 4-connected triangulation to any other 4-connected
triangulation.

Several interesting questions remain open: are there triangulations that require at least n− 4 edge
flips to be converted to Hamiltonian or 4-connected? is 4n − 22 the best upper bound for converting
one 4-connected triangulation to another? is there a matching lower bound? is 6n − 30 the best
upper bound for converting one triangulation to another? Can one find matching upper and lower
bounds? To date, all of the bounds are proven by showing how to transform a given triangulation
into a canonical one (of some form). Clearly, this is not necessarily the best way for transforming a
triangulation T1 into T2. For example, it may be that a single edge flip is sufficient to transform T1

into T2 but by going via a canonical triangulation, O(n) flips are performed. Thus, is it possible to
efficiently compute the smallest number of flips sufficient to transform a given triangulation T1 into T2

(i.e. without constructing the whole flip graph)? or can a sequence of flips be found whose length is
related to (i.e. bounded by a constant or a (1+ε)- approximation) the length of the shortest sequence?
In terms of the flip graph, this is asking for the shortest path or an approximation of the shortest path
between two vertices of the flip graph.

Another question of interest is the maximum number of edges that can be individually flipped (i.e.
edges that are flippable) in a triangulation. Gao et al. [6] showed that every n-vertex triangulation has
at least n−2 flippable edges and that there exist triangulations with at most n−2 flippable edges. The
former result is proved by showing that every face has at least one edge that is flippable. The latter
is through a simple construction where one starts with an initial triangulation T on m vertices and
inserts a vertex inside each face of T , and completes the triangulation by joining the vertex to each of
the three vertices of the face. The resulting n-vertex triangulation has only n− 2 flippable edges. Note
that separating triangles play a key role here. In a triangulation, every vertex of degree 3 is contained
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in a separating triangle. Therefore, triangulations with minimum degree at least 4 have more flippable
edges. In fact, Gao et al. [6] show that every n-vertex triangulation with minimum degree at least
4 (for n > 8) has at least 2n + 3 flippable edges. There exist triangulations that also achieve this
bound, therefore, these bounds are tight. When viewed in terms of the flip graph, these questions are
asking about the degree of a vertex. However, there is a subtle difference. Even if a triangulation has
n − 2 flippable edges, it does not necessarily mean that flipping each of those edges leads to n − 2
combinatorially distinct triangulation. Therefore, it would be interesting to determine the maximum,
minimum and average degree of a vertex in the flip graph.

In an n-vertex triangulation, since there are always a linear number of edges that can each be
individually flipped, it seems natural to ask how many of these edges can be flipped simultaneously.
This notion was introduced, albeit in the geometric setting, by Galtier et al. [5]. Given an n-vertex
triangulation T and a subset S of edges, the operation of a simultaneous flip consists of flipping each of
the edges in S to produce a distinct triangulation T ′. Such a set S of edges is said to be simultaneously
flippable. Sets of simultaneously flippable edges have a strong connection to the notion of a flippable
edge but they are a different beast altogether. For example, it is possible for a set S of edges to be
simultaneously flippable yet contain edges that are not individually flippable. It is also possible for
every edge in a set S to be individually flippable but the set S itself not be simultaneously flippable. In
this setting, the main question is how many simultaneous flips are sufficient to convert one n-vertex
triangulation to another. The work on individually flippable edges trivially implies that O(n) simulta-
neous flips are sufficient. The question is how much better can one do when one takes advantage of
the ability to flip multiple edges at the same time. Bose et al. [3] showed that O(log n) simultaneous
flips are sufficient to convert any n-vertex triangulation to any other. They showed that this bound
is tight since there exist pairs of triangulations that require at least Ω(log n) simultaneous flips to be
converted to each other. The approach taken in Bose et al. [3] is to convert a triangulation into canon-
ical form using simultaneous flips. As was shown by Mori et al. [10] for the case of single flips, Bose
et al. [3] show that a few number of simultaneous flips are sufficient to convert a given triangulation
into a 4-connected (Hamiltonian) one. In fact, they show that at most one simultaneous flip is suffi-
cient. With respect to the maximum number of edges that can always be simultaneously flipped in an
n-vertex triangulation, it is shown in [3] that at most n − 2 edges can ever be flipped simultaneously,
that every triangulation has at least (n− 2)/3 edges that can be flipped simultaneously and that there
exist triangulation where at most 6(n − 2)/7 edges can be flipped simultaneously. A number of open
problems remain. Can the gap between the lower bound of (n−2)/3 and upper bound of 6(n−2)/7 be
closed? Although asymptotically, the bounds on the number of simultaneous flips needed to convert
any n-vertex triangulation to any other are tight, the constants are definitely not tight.
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Figure 4: One flip is not sufficient to convert the left graph into the right graph in the labelled setting

So far, all of the results that have been discussed pertain to the unlabelled setting, that is given
an initial triangulation, we wish to convert it to a final triangulation but are satisfied if the edge flips
terminate with a triangulation that is isomorphic to the final triangulation. In the labelled setting, we
are given an initial n-vertex triangulation and a final n-vertex triangulation defined on the same vertex
set and we wish to bound the number of edge flips needed to convert the initial triangulation into the
final one. Gao et al. [6] showed that O(n log n) edge flips are sufficient. Notice that if we transform
both the initial and final triangulation into Wagner’s canonical form without paying attention to vertex
labels, then the problem in the labelled setting becomes one of sorting the vertices along the spine.
This is essentially what Gao et al. [6] do in a divide-and-conquer fashion leading to the O(n log n)
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result. One interesting question is whether or not Ω(n log n) is a lower bound or can this be achieved
with O(n) edge flips as in the unlabelled case? The results in Bose et al. [3] trivially imply an O(n)
bound for the number of simultaneous flips in the labelled setting. Can this be improved?

3 Geometric Setting

In the geometric setting, the graphs studied are straight-line planar embeddings of near-triangulations
where vertices are points in the plane and edges are straight-line segments. The seminal result by
Lawson [9] initiated the study of flips in the geometric setting. Lawson [9] showed that given any
two near-triangulations N1 and N2 straight-line embedded on the same n points in the plane, there
always exists a finite sequence of edge flips that transforms the edge set of N1 to the edge set of N2.
The approach used by Lawson [9] is similar to that of Wagner [14] in that Lawson showed how to
convert a given near-triangulation into canonical form using edge flips. The canonical form selected
by Lawson is the Delaunay[4, 11] triangulation of the point set. Lawson [9] showed that O(n2) flips
are sufficient to convert any n-vertex near-triangulation into the Delaunay triangulation of the same
point set. Contrary to the situation in the combinatorial setting, Hurtado et al. [7] proved that this
bound is tight by constructing a pair of n-vertex near-triangulations that require at least Ω(n2) edge
flips to convert one into the other. This leads to the question as to whether or not some of these bounds
are sensitive to properties of the point set. In the case where the points are in convex position, Hurtado
et al. [7] note that due to the bijection between triangulations of convex n-gons and binary trees with
n−2 internal nodes, the result of Sleator et al. [12] implies that at most 2n−10 edge flips are sufficient
to convert any triangulation of a set of n points in convex position to any other triangulation of the
same point set. If a set of n points has k convex layers3, Hurtado et al. [7] show that O(kn) edge flips
are sufficient. For simple triangulated n-gons with k reflex vertices, O(n + k2) edge flips are sufficient.
When studying the maximum number of edges that can be flipped in any near-triangulation of a set
of n points in the plane, Hurtado et al. [7] prove that at least d(n − 4)/2e edges are flippable. They
show that this bound is tight by providing a construction (similar to the one described in Gao et al.
[6]) that allows only d(n− 4)/2e flippable edges. Several open questions remain in this area: can one
find matching constants in the upper and lower bound on the number of edge flips? Can one find a
matching lower bound for the case where the point set has k convex layers or is O(kn) the correct
asymptotic answer? Is there a class of graphs that can be reached in fewer edge flips? For example, in
the combinatorial setting, fewer flips were needed to convert a given triangulation into a Hamiltonian
one. Is the same true in the geometric setting? Is there always a sequence of o(n2) flips that allows
one to convert any near-triangulation into a Hamiltonian one?

Figure 5: The darkened edges in the near-triangulation on the left are simultaneously flipped to give
the triangulation on the right.

In an n-vertex near-triangulation, since there are always d(n− 4)/2e edges that can be individually
flipped, Galtier et al. [5] where the first to ask whether flipping several edges at the same time could
help. They introduced the notion of a simultaneous geometric flip (this is similar to the notion of si-
multaneous flips discussed in the previous section. See Figure 5). Given an n-vertex near-triangulation

3the number of convex layers in a point set is the number of times the convex hull of a point set can be removed from the
point set until the point set is empty.
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T and a subset S of edges, the operation of a simultaneous flip consists of flipping each of the edges
in S to produce a distinct near-triangulation T ′. Such a set S of edges is said to be simultaneously
flippable. Galtier et al. [5] showed that O(n) simultaneous edge flips are sufficient to convert any
n-vertex near-triangulation to any other near-triangulation on the same vertex set. They modified the
construction in Hurtado et al. [7] to show that there exist pairs of near-triangulations that require Ω(n)
simultaneous edge flips. For the restricted case where the points are in convex position, they showed
that O(log n) simultaneous flips are sufficient and there are pairs of near-triangulations that require
Ω(log n) simultaneous flips. Finally, they showed that every near-triangulation on n points has at least
(n−4)/6 edges that can be flipped simultaneously and that there exist triangulations that have at most
(n− 4)/5 edges that can be flipped simultaneously. A number of questions remain unsolved: Although
asymptotically, the bounds on the number of simultaneous flips are tight both in the general case and
the case where the points are in convex position, in neither case is the constant tight. Can the gap
between the (n − 4)/6 lower bound and (n − 4)/5 upper bound be closed? Can a smaller number of
simultaneous flips allow one to convert any n-vertex near triangulation into a Hamiltonian one? What
happens if one restricts their attention to only Delaunay flips4?

4 Extensions of the Geometric Setting

As noted in the introduction, there is quite a discrepancy between the combinatorial setting of the
problem and the geometric one. In the combinatorial setting, all the results are with respect to the
class of triangulations whereas in the geometric setting, the transformations are restricted to a fixed
point set. For example, Wagner [14] showed that every triangulation on n vertices can be transformed
to every other triangulation via edge flips. On the other hand, in the geometric setting, Lawson [9]
showed that only the near-triangulations that are defined on a specified point set can be attained via
edge flips. This discrepancy initiated a new line of investigation. Namely, does there exist a set of
local operations, in addition to edge flips, that permits the enumeration of all n-vertex triangulations
in the geometric setting. In order to achieve this, it is essential to allow a point to be moved because
given a set of n points in the plane, not all n-vertex triangulations can be straight-line embedded on
the given point set. Abellanas et al. [1] defined a point move in an n-vertex triangulation embedded in
the plane as simply the modification of the coordinates of one vertex of the graph. The point move is
deemed valid provided that no edge crossings are introduced after the move. In this setting, Abellanas
et al. [1] showed that O(n) point moves and O(n2) edge flips are sufficient to transform any n-vertex
triangulation embedded in the plane into any other n-vertex triangulation. Moreover, if the initial
graph is embedded in an n × n grid, all point moves stay within a 5n × 5n grid (i.e. the size of the
coordinates in the move are bounded). Although Hurtado et al. [7] provide a pair of n-vertex near-
triangulations that require Ω(n2) edge flips to transform one into the other, this lower bound no longer
holds in the presence of point moves. In fact, it can be shown that O(n) point moves and edge flips are
sufficient for this case. Therefore, the question becomes is there an Ω(n2) lower bound on the number
of edge moves required? If one removes the restriction on the size of the coordinates, Aloupis et al.
[2] was able to show that with O(n log n) point moves and edge flips, one can convert any n-vertex
straight-line embedded triangulation into any other. Is this best possible or can it be shown that a linear
number of edge flips and point moves is sufficient? In the labelled setting, Abellanas et al. [1] showed
that O(n2) point moves (with all moves restricted to the 5n × 5n grid) and edge flips are sufficient.
Aloupis et al. [2] proved that O(n log n) point moves and edge flips are sufficient when there are no
restrictions on the size of the the coordinates. We conclude by asking whether or not these bounds are
optimal?
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